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Abstract

Software was developed for solving Maxwell’s equations using the finite-difference
time-domain method, and was used to study 2D and 3D dielectric composites. The
software was written from the ground up to be fast, extensible, and generalized for
solving any finite difference problem. The code supports parallelization, allowing so-
lutions to be obtained quickly using a beowulf cluster. An extension to the basic
FDTD plane wave source was derived, allowing for the creation of angled, periodic,
unidirectional plane waves on a square grid. 1D photonic crystal stacks were ar-
ranged in a square array and it was discovered that sizeable bandgaps for 2D and
3D geometries appear along the principle axes for different polarizations of the struc-
ture. Furthermore, bandgaps in different directions and polarizations could be made
to overlap for reasonably large frequency ranges. The structure show promise for
use as a low-threshold lasing and may be optimized to produce a complete photonic
bandgap.
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Chapter 1

Introduction

“One scientific epoch ended and another began with James Clerk Maxwell.”

-Albert Einstein

1.1 Maxwell’s Equations

In 1864, James Clerk Maxwell published a groundbreaking paper titled “A Dynamic

Theory of the Electromagnetic Field” in which he synthesized the electrostatics work

of Coulomb, Gauss, Faraday, and Ampere to produce a set of equations that govern

the propagation of all electromagnetic waves, thereby uniting electricity and mag-

netism via coupled oscillating fields. He later correctly predicted that such oscillating

electric and magnetic fields could exist not just in conductors but in all materials or

even in empty space, and that these electromagnetic waves transport energy. Fur-

thermore, Maxwell showed that his equations predicted the speed of electromagnetic

waves to be very close to the best experimentally measured speed of light at his time,

and correctly concluded that light was an electromagnetic wave. This realization is

considered to be one of the greatest scientific discoveries of all time because it paved

the way for modern physics and lead to a technological revolution that has reshaped

society[3]. Although his speculation proved to be correct, he encountered much criti-

cism from physicists of the time who found his ideas to be outrageous. The following

derivation of Maxwell’s Equations was adapted from electrodynamics texts written
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by Jackson and Kong[4, 5].

1.1.1 Coulomb’s Law

Charles-Augustin de Coulomb, in 1781, showed that he had produced a law which

describes the force of attraction between charged particles. His work has three impor-

tant consequences which nicely parallel Newton’s equation of gravitational attraction.

Coulomb showed that the force between charged particles acted along a straight line

between the particles, varied as the magnitude of the charges and the inverse square

of the distance between the particles, and that the net force acting on a particle was

the vector sum of forces from all surrounding charged particles (i.e. a superposition

principle). Coulomb’s Law is:

~F =
kq1q2

|~r |2 r̂ (1.1)

where ~F is the force vector, k is a constant and q1 and q2 are the charges of the parti-

cles separated in space by a vector ~r . The hat notation (i.e. r̂) denotes a normalized

vector. The direction of the force is determined by the sign of the charges – like

charges repel and unlike charges attract. Interestingly, the definition of positive and

negative charge used today was chosen somewhat arbitrarily by Benjamin Franklin

who was fascinated with electricity and who first demonstrated charge conservation

experimentally[6].

Having obtained a force law for charged particles, it is useful to define the electric

field. It is appropriate to think of electrostatic attraction as occurring via a field

like gravity – each charged particle creates a field throughout all of space that other

particles feel and react to. The electric field created by a point charge q is defined as

the force acting on a unit charge that is placed at at distance from the point charge:

~E =
~F

q
(1.2)

The force term is defined by Coulomb’s Law [Eq. 1.1], and thus the electric field

14



experienced by a unit charge (i.e. q2 = 1) due to the point charge q is:

~E =
kq

|~r |2 r̂ (1.3)

It is important to note that there is one small flaw with Coulomb’s Law. It

assumes that there is instantaneous communication between the two point charges

that are interacting via electric fields, but Maxwell showed that the fields travel at

the speed of light. If the charges are travelling close to the speed of light, Einstein’s

theory of relativity must be considered and we would have to turn to the field of

quantum electrodynamics.

1.1.2 Gauss’s Law

Gauss’s Law relates the electric flux through a closed surface to the charge enclosed

by the surface. Gauss’s Law can be derived from Coulomb’s Law by considering the

flux of the electric field, ΦE, through a closed surface. This flux is represented by a

surface integral:

ΦE =

∮

S

~E · n̂ dA (1.4)

where dA is a small area patch on a closed Gaussian surface and n̂ is the surface normal

of that patch. For any charges placed outside the surface, the net flux through the

surface will be zero because every imaginary field line that enters the surface will

eventually leave the surface. If the point charge q is contained within the surface,

field lines only pierce the surface once and the integral is not zero. If dA is projected

onto a sphere, the solid angle dΩ subtended by the patch, located at a distance r

from the origin, is defined as the surface area of the patch when projected onto a unit

sphere with normal n̂s:

dΩ =
n̂s · n̂ dA

r2
(1.5)

If θ is the angle between the surface normal of the patch and that of the sphere, that

is, the angle between n̂ and n̂s, then n̂s · n̂ dA = cosθ dA and thus r2 dΩ = cosθ dA.

15



Evaluating the surface integral [Eq. 1.4]:

∮

S

~E · n̂ dA =

∮

S

kq

r2
dA =

∮

S

kq dΩ (1.6)

Because there are 4π steradians in a sphere:

∮

S

~E · n̂ dA = 4πkq (1.7)

which is Gauss’s Law. The law reveals that the flux through any Gaussian surface

depends only on the amount of charge that lies within the surface. If the charge exists

in the form of a charge density ρ(~r ) rather than a collection of point charges, the law

can be written as: ∮

S

~E · n̂ dA = 4πk

∫

V

ρ(~r ) dV (1.8)

Gauss’s Law [Eq. 1.7] can be expressed in differential form by application of the

divergence theorem1:

∮

S

~E · n̂ dA = 4πk

∫

V

ρ(~r ) dV =

∫

V

∇ · ~E dV (1.10a)

∫

V

(
∇ · ~E − 4πkρ

)
dV = 0 (1.10b)

Equation 1.10b can only be true if:

∇ · ~E = 4πkρ (1.11)

The issue of units in electromagnetism is complicated. Several systems are com-

monly used, and they each assign different units and magnitudes to the constants that

appear in electrostatics and electrodynamics equations. A good discussion of the dif-

ferent systems can be found in the appendix of Jackson’s electrodynamics textbook.

1The divergence theorem describes a transformation between a surface integral and volume inte-
gral for a vector field F [7]: ∮

S

~F · n̂ dA =
∫

V

∇ · ~F dV (1.9)
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For the SI system, the constant k is defined as k = 1
4πε0

where ε0 is the permittivity

of free space. Gauss’s Law then becomes:

∇ · ~E =
ρ

ε0

(1.12)

1.1.3 Ampere’s Law

The relationship between magnetic flux density ~B and a steady state current I flowing

through a wire was measured by Ampere. He found the following inverse square

relationship which parallels Coulomb’s law:

d ~B = kI
d~l × r̂

|~r |2 (1.13)

k is a constant2, and d~l is a line element pointing in the direction of the current flow.

~r is a vector from the line element to the point where the magnetic flux is to be

determined, and r̂ is a unit vector. The equation can be integrated to obtain:

~B =
µ0

4π

∫

V

~J × r̂

|~r |2 dV (1.14)

where ~J is the current density. This equation can be simplified3:

~B =
µ0

4π

∫

V

~J ×
(
−∇ 1

|~r |
)

dV (1.16a)

~B =
µ0

4π
∇×

∫

V

~J
1

|~r | dV (1.16b)

and because the divergence of a curl is zero:

∇ · ~B = 0 (1.17)

2For the SI units system, k = µ04π
3The following equality is used for simplification:

1
|~r |2 r̂ = −∇

(
1
|~r |

)
(1.15)
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A relationship involving the curl of ~B can also be found from equation 1.16b:

∇× ~B =
µ0

4π
∇×∇×

∫

V

~J

|~r |dV (1.18)

Simplification of the above equation will not be presented. It is recommended that

the reader consult Jackson’s electrodynamics text for a thorough treatment of the

solution[4]. Eq. 1.18 can be simplified to a simple relation which is Ampere’s Law in

differential form:

∇× ~B = µ0
~J (1.19)

This relationship can be expressed in integral form with the application of Stokes

theorem4:

∫

S

(
∇× ~B

)
· n̂ dA = µ0

∫

S

~J · n̂ dA (1.21a)

∮

C

~B · d~l = µ0

∫

S

~J · n̂ dA (1.21b)

∮

C

~B · d~l = µ0I (1.21c)

Equation 1.21c expresses Ampere’s discovery that looping magnetic flux is created

and is proportional to the electric current flowing through a loop.

1.1.4 Faraday’s Law

All but Faraday’s Law were derived from steady state observations. Faraday’s time-

dependent observations were what later inspired Maxwell to realize that electric and

magnetic fields were closely related and lead to Maxwell’s famous modification of

Ampere’s Law. Faraday discovered that a changing magnetic flux induces a looping

electric current. He observed temporary variations in a steady-state current flowing

4Stokes’ theorem describes the equality of a line integral and a surface integral[7]:
∫

S

(
∇× ~F

)
· n̂ dA =

∮

C

F · t̂ ds (1.20)

S is a surface with normal n̂, C is a closed path on S with tangent t̂, and ~F is a vector field.
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through a circuit as current in a nearby circuit was turned on or off, or if the second

circuit was moved relative to the first. He also observed temporary variations in

current if a permanent magnet was moved into or out of the circuit. His observations

can be expressed as:

ξ = −k
dΦB

dt
(1.22)

where ξ is the electromotive force, k is a constant, and ΦB is the magnetic flux through

a surface. The magnetic flux can be expressed as a surface integral of the magnetic

flux density ~B :

ΦB =

∫

S

~B · n̂ dA (1.23)

Furthermore, the electromotive force ξ around the loop is the line integral of the

electric field:

ξ =

∫

C

~E · d~l (1.24)

Equations 1.22, 1.23, and 1.24 are now combined:

ξ =

∫

C

~E · d~l = −k
dΦB

dt
(1.25)

∫

C

~E · d~l = −k
d

dt

∫

S

~B · n̂ dA (1.26)

If we assume ~E and ~B are in the same reference frame so that relativistic effects

can be ignored, Stokes’s theorem can be applied to the left side of equation 1.26 to

obtain the differential form of Faraday’s Law. The constant k disappears because it

is equal to unity in the SI system:

∫

S

(
∇× ~E +

∂ ~B

∂ t

)
· n̂ dA = 0 (1.27a)

∇× ~E +
∂ ~B

∂t
= 0 (1.27b)

19



1.1.5 Maxwell’s Equations

A conservation law can be written for a flux of charge, since charge is a conserved

quantity:
∂ρ

∂t
= −∇ · ~J (1.28)

The equation states that the accumulation of charge ρ at a point is the negative

divergence of the electric current at the point – equivalent to the amount of charge

“arriving” at that point. Maxwell realized this and made a correction to Ampere’s

Law, which had been derived for the steady state condition∇· ~J = 0. He used Gauss’s

Law [Eq. 1.12] to evaluate ∂ρ
∂t

and then substituted the result in the conservation law

[Eq. 1.28]. When simplified, the conservation law then becomes:

∇ · ~J +
∂ρ

∂t
= ∇ ·

(
~J +

∂ ~D

∂t

)
= 0 (1.29)

Maxwell called ~D the electric displacement field, and it represents the electric flux

density in a material5. Maxwell then replaced ~J in Ampere’s Law (Eq. 1.19) with

the term ~J + ∂ ~D
∂t

, which he called the displacement current, and obtained an equation

that describes time-dependent fields:

∇× ~H = ~J +
∂ ~D

∂t
(1.30)

Having obtained a time evolution equation for the electric flux density, Maxwell

now had all the pieces necessary to describe electromagnetic waves. Maxwell’s equa-

tions are:

∇× ~E +
∂ ~B

∂t
= 0 (1.31a)

∇× ~H = ~J +
∂ ~D

∂t
(1.31b)

∇ · ~D = ρ (1.31c)

∇ · ~B = 0 (1.31d)

5see section 1.2 for a description of the relationship between ~D and ~E .
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1.2 Constitutive Relations

Constitutive laws relate the electric field to the electric flux and the magnetic field

to the magnetic flux in a material. For linear, isotropic, nondispersive materials the

following relationships apply:

~D = ε ~E (1.32a)

~B = µ ~H (1.32b)

where ε is the electrical permittivity tensor of the material and µ the magnetic per-

meability tensor. Because only isotropic materials were simulated, scalars were used

for ε and µ. To eliminate units, both properties are are generally referenced to their

values in a vaccum, ε0 and µ0:

ε = εrε0 (1.33a)

µ = µrµ0 (1.33b)

εr is the relative permittivity and µr is the relative permeability. Both are dimension-

less scalars, and εr is commonly called the dielectric constant. ε0 is the permittivity

of free space and µ0 is the permeability of free space. These variables are universal

physical constants with values of ε0 = 8.854× 10−12 farads/meter and µ0 = 4π × 107

henrys/meter in SI units.

When studying dielectric composites, the index of refraction, n, is often reported

instead of the dielectric constant εr. The index of refraction represents the ratio of

the speed of the electromagnetic wave in a vacuum (i.e. the speed of light) to the

speed in the material. The relationship between index of refraction and dielectric

constant is:

n =
√

εrµr (1.34)

Because the magnetic permeability was held constant for the analysis below, the

relative permeability µr is unity, and the index of refraction only depends on the
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dielectric constant:

n =
√

εr (1.35)

1.3 Electromagnetic Plane Waves

The solutions to Maxwell’s equations give many important insights into the behavior

of electromagnetic waves in matter. To begin with, the equations have a travelling

plane wave solution6 of the form ei(~k ·~x−ωt). The existence of a travelling plane wave

solution explains why electromagnetic waves such as radio waves, infrared, light,

ultraviolet rays, and x-rays exist and are able to transport energy through space.

Maxwell realized that electric and magnetic fields hold potential energy much like

mechanical springs and that the oscillations of the fields allowed them to travel and

transport energy.

Figure 1-1 shows the magnitudes of the electric and magnetic field for an electro-

magnetic wave propagating in a vaccum. The wave propagates in the direction of the

Poynting vector ~S :

~S = ~E × ~H (1.36)

The Poynting vector defines the direction of energy flow, and its magnitude expresses

the energy flux rate, or intensity of the wave (expressed in units of energy
area·time

). The

magnitude of the Poynting vector is used in Section 3.5 to measure the reflectivity of

dielectric structures. Because the magnitude of the instantaneous Poynting vector is

time-dependent (c.f. how the fields oscillate in figure 1-1), it is often useful to report

the time-averaged Poynting vector. The Poynting vector also plays a crucial role in

Poynting’s theorems of energy and momentum conservation for electromagnetic fields

and systems of charged particles.

6A thorough proof is presented by Jackson[4].
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Figure 1-1: An electromagnetic wave propagating in a vaccum. ~S is the Poynting
vector.

1.4 Electromagnetic Waves at an Interface

Maxwell’s equations can be used to study what happens to an electromagnetic wave

at an interface between two materials. The study of optics long preceded Maxwell’s

work and lead to equations useful for describing optical lenses despite the fact that

the nature of light was not well understood. The power of Maxwell’s equations is

demonstrated in that, in addition to describing electrical and magnetic phenomena,

they shed light on all optical phenomena, including topics that had been studied

before the time of Maxwell such as reflection, refraction, polarization, total internal

reflection, and the Brewster angle.

Figure 1-2 shows an electromagnetic wave being scattered at an interface between

materials with indices of refraction n1 and n2. The incident wave is partially reflected

and partially refracted (transmitted). Wave interactions at an interface obey the

phase matching condition, which states that the tangential components of the wave

vector, ~k t, are conserved at a boundary[5]. The wave vector ~k points in the same

direction as the Poynting vector but its magnitude is the wavenumber, 2π
λ

. The

phase matching condition, which can be derived from Maxwell’s equations, has several

important consequences. First, the kinematics of electromagnetic wave scattering at

an interface can be solved. Conservation of ~k t for the reflected wave requires that ~k t

be the same for both the incident and reflected wave and produces the familiar rule

that the angle of incidence must equal the angle of reflection. Conservation of ~k t for
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the refracted wave yields Snell’s Law:

n1sin(θ1) = n2sin(θ2) (1.37)

When a wave propagates from a high refractive index material to a low refractive

index material, there will be a critical angle θc such that when θc is exceeded, the

tangential component of the incident wave vector ~k inc
t becomes larger than the total

wave vector ~k in the material with index n2. Thus ~k t cannot be conserved at the

interface for a transmitted wave and the result is total internal reflection. θc can be

found by solving Snell’s Law [Eq. 1.37] with θ2 = 90◦:

θc = sin−1

(
n2

n1

)
(1.38)

Another interesting phenomenon occurs when ~k trans
n = ~k inc

n , where ~k n is the value

of the normal component of the wave vector. This condition corresponds to ~k n being

conserved across the interface. In this case, the Fresnel equations [Eq. 1.41] reveal

that there is no reflected wave; all waves are transmitted. The angle at which this

occurs is θb, the Brewster angle, which can be found by solving the Fresnel equations

for zero reflectivity and employing Snell’s Law. Interestingly, the Brewster angle only

exists for TM polarized waves (TM is defined in Section 3.2):

θb = tan−1

∣∣∣~k trans
∣∣∣

∣∣∣~k inc

∣∣∣
= tan−1

√
ε2

ε1

(1.39)

The amount of light that is reflected and refracted when a wave scatters at an

interface can be calculated from the Fresnel equations. Γ is the reflection coefficient,

the ratio of reflected power to incident power, and τ is the transmission coefficient,

the ratio of transmitted power to incident power. Γ and τ are related for a lossless

material such that:

Γ + τ = 1 (1.40)

The values of the reflection coefficient depend on the polarization of the incident
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Figure 1-2: Scattering of an electromagnetic wave at a dielectric interface.

wave. The Fresnel equations for both the TE and TM polarizations (Section 3.2) are

shown below:

ΓTE =

(
Eref

0

Einc
0

)2

=

(
n1

µ1
cos(θ1)− n2

µ2
cos(θ2)

n1

µ1
cos(θ1) + n2

µ2
cos(θ2)

)2

(1.41a)

ΓTM =

(
Eref

0

Einc
0

)2

=

(
n2

µ2
cos(θ1)− n1

µ1
cos(θ2)

n2

µ2
cos(θ1) + n1

µ1
cos(θ2)

)2

(1.41b)

Eref
0 and Einc

0 are the amplitudes of the reflected and incident waves, respectively.

1.5 Wave Impedance

The reflection and transmission of an electromagnetic wave at an interface can also be

thought of in terms of wave impedance. The impedance of a material depends on ε and

µ, and a difference in impedance between two materials causes electromagnetic waves

to be scattered. Such a formulation is useful for understanding the perfectly matched

boundary layer described in section 3.4. The wave impedance is the ratio of the

transverse electric field to the transverse magnetic field and depends on polarization.
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Wave impedance is given as[4]:

ZTM =
ωµ∣∣∣~k n

∣∣∣
= cos(θ)

√
µ

ε
(1.42a)

ZTE =

∣∣∣~k n

∣∣∣
ωε

=
1

cos(θ)

√
µ

ε
(1.42b)

~k n is the normal component of the incident wave vector and ω is the angular frequency.

For normal angles of incidence, the impedance can be simplified to Z =
√

µ
ε
, and for

angles larger than θc, the impedance is imaginary[5]. The reflection and transmission

coefficients are defined, in terms of the impedance in materials n1 and n2 from figure

1-2, as:

Γ =
Z1 − Z2

Z1 + Z2

(1.43a)

τ =
2Z2

Z2 + Z1

(1.43b)
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Chapter 2

Photonic Crystals

Photonic crystals are periodic arrangements of materials with different dielectric con-

stants that affect the behavior of light. The crystal’s geometry exploits the simple

reflection and transmission rules for electromagnetic waves as discussed in section 1.4

in such a way that new and useful optical behaviors are produced. Photonic crys-

tals can be used to create perfect dielectric mirrors, light filters and sensors, efficient

lasers[8], and waveguides for light. Defects in photonic crystals can be used to trap

and control single photons of light[9]. Photonic crystal structures are being used

in the development of optical circuits[10], and there has been recent interest in the

phenomenon of negative refraction that can be produced with photonic crystals[11].

The study of photonic crystals does not involve more sophisticated concepts than

were developed by Maxwell and others in the 1800’s. Although Maxwell could have

envisioned photonic crystals, they have only recently been studied seriously because

advances in manufacturing techniques have allowed the design of structures on the

nanoscale.

Because the wavelength of visible light is about 400nm to 700nm, the structures

that create novel behavior must be of roughly the same dimensions. An interesting

feature of Maxwell’s equations is that they are scalable such that the solution is inde-

pendent of length scale. Thus a solution at one length scale can be scaled and apply to

the same system at any other length scale. Thus when simulating a photonic crystal,

the geometry should be considered rather than the absolute size of the structure.
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Figure 2-1: Photonic crystals can be periodic in one, two, or three dimensions. Colors
represent materials with different dielectric constants[1].

2.1 The photonic bandgap

Photonic crystal geometries are categorized by their periodicity. Figure 2-1 shows how

materials with different dielectric constants may be combined to produce geometries

that are periodic in one, two, and three dimensions. The periodicity of the crystal is

an important factor that controls the crystal’s photonic properties[12].

One of the most important features of photonic crystals is that they may have

photonic bandgaps. The photonic bandgap is analogous to electronic bandgaps in

semiconductors, except that the electrons from solid-state electronics are replaced by

photons. A photonic bandgap can be thought of in a couple of ways. A material with

a photonic bandgap will reflect all light over a frequency range and transmit none of

it, the density of photonic states within the crystal goes to zero in the bandgap, and

the modes within the band gap are evanescent (exponentially decaying).

If a photonic crystal reflects light of any polarization incident at any angle, then

it has a complete photonic bandgap. 1D and 2D dielectric structures may have a

bandgap in one and two directions respectively, but they will not have a complete 3D

bandgap because there is no periodicity to scatter electromagnetic waves in at least

one direction. 3D photonic crystals are candidates for complete photonic bandgaps,

but because they are much harder to manufacture than their 1D or 2D counterparts,

they should only be used for applications where a complete bandgap is required. Many

dielectric geometries in 1D, 2D, and 3D have been shown to have complete bandgaps

for their respective dimensions. Furthermore, many of these structures have been
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fabricated and the bandgap confirmed experimentally. Commonly studied photonic

crystal geometries include the quarter-wavelength stack in 1D, arrays of dielectric

circles, circular voids, or linear veins in 2D, and, in 3D, lattices of voids or dielectric

spheres[12]. Other more complex 3D geometries have been discovered[1, 13], including

some bi-continuous, triply periodic minimal surfaces that can be manufactured by

interference lithography.

2.2 The quarter wavelength stack

The 1D photonic stack is a simple structure that exhibits a bandgap and that will

be used as the basis for development of more sophisticated 2D and 3D structures in

chapters 4 and 5. If the layers of a 1D photonic crystal (leftmost image, figure 2-1)

are chosen such that light of wavelength λ travels a distance λ/4 in each layer, the

structure will have a bandgap at normal angles of incidence and is called a quarter

wavelength stack. The bandgap exists because all of the light that is reflected at the

boundaries constructively interferes and emerges from the structure perfectly in phase.

Consider the phase of a plane wave as it penetrates the structure and is partially

reflected at each interface. The light that emerges from the quarter wavelength stack

has travelled an integer multiple of λ/2 in each layer, because it must pass through

the layer completely at least twice – once when incident and once when reflected.

Additionally when light is travelling in a material with low dielectric constant and is

reflected by a material with higher dielectric constant there is a phase change of π.

The combined effect of these observations is that all of the light is eventually reflected

and exits the structure in phase, producing a bandgap.

2.3 Calculating photonic bandgaps

The calculation of a photonic bandgap requires solving Maxwell’s equations for a

dielectric structure. Frequency domain and time domain algorithms are two different

approaches are commonly used to solve Maxwell’s equations, and each method has
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advantages and disadvantages.

The frequency domain approach involves solving Maxwell’s equations for eigenval-

ues and eigenfunctions, analogous to computing the Bloch wave function in quantum

mechanics. It is frequency domain because it determines the wave mode eigenfunc-

tion ~H (r) for a specific frequency ω that is directly related to the eigenvalue (ω/c)2.

Maxwell’s equations are decoupled to produce a Schrodinger-like equation that can

be solved for eigenfunctions and eigenvalues[12]:

∇×
(

1

ε(r)
∇× ~H (r)

)
=

(ω

c

)2
~H (r) (2.1)

The frequency domain is appropriate for determining dispersion relations for photonic

crystals and for analysis of the photonic band structure, which describes how the

wavelength of a propagating wave varies with frequency.

The time domain solution is obtained by iterating Maxwell’s equations through

time on a spatial grid. The state of the system is known at a specific time, but not

necessarily for any specific frequency. Time domain simulations allow for analysis of

where fields concentrate in the system and are useful for measuring transmittance

and decay times. Time domain simulations, unlike frequency domain simulations,

are not restricted to solving for periodic structures because of the development of

absorbing boundaries that effectively create a computational domain extending to

infinity. Thus any arbitrary, finite system can be simulated. Unfortunately, unlike

frequency domain simulations, time domain simulations do not scale well with changes

in grid resolution or system size. Also, in the time domain, closely spaced modes

may not be distinguishable if the frequency resolution is not high enough. Such a

resolution problem will not happen in the frequency domain because different bands

are represented by different eigenvalues.

An advantage of the time domain is the ability to solve for a system’s response

to all frequencies from just one simulation. In the frequency domain for comparison,

a new simulation must be run for each frequency to be investigated. This ability

is possible in the time domain because the time domain and frequency domain are
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related via Fourier transforms. A measurement of the response over all frequencies

can be achieved by measuring the system’s response to an impuse function, which

contains all frequencies. As described by Weaver [14], the function y(x) that describes

the response of the system to an input function f(x) is given by the convolution of

f(x) with h(x), the response of the system to the impulse function:

y(x) =

∫ ∞

−∞
f(ξ)h(x− ξ) dξ (2.2)
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Chapter 3

The Finite-Difference Time

Domain Approach

3.1 Finite Differences

FDTD simulations use the method of centered finite differences to solve differential

equations numerically on a grid. At a point ui,j,k in space, the derivatives in the

x-direction are approximated from the values at neighboring points using centered

differencing:
∂u

∂x
=

ui+1,j,k − ui−1,j,k

24x
+ O

[
(4x)2

]
(3.1a)

∂2u

∂x2
=

ui+1,j,k − 2ui,j,k + ui−1,j,k

(4x)2
+ O

[
(4x)2

]
(3.1b)

where ∆x is the distance between gridpoints in the x-direction. Equations for deriva-

tives in other directions have the same form. This method is “centered” because one

point on either side of ui,j,k is used to compute the derivative. The method is only an

approximation of the actual derivative, because the derivative is defined in the limit

that the grid spacing goes to zero. The amount of error for centered differencing is

proportional to (∆x)2, and thus it is second-order accurate. Although the differenc-

ing scheme has been presented for spatial derivatives, it will also be used to compute

temporal derivatives and will provide second-order accuracy in time.
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(a) (b)

Figure 3-1: There are two independent polarization modes, TE and TM, which occur
in 2D electromagnetic simulations.

3.2 TE and TM Modes

Three vectors are needed to find a solution to Maxwell’s curl equations because the

cross product in the equations relates three orthogonal vectors. For simulation of a

2D structure there are two possible polarizations to choose from when assigning fields

to the 2D computational grid. These two modes are illustrated in figure 3-1, where it

can be seen that either Hx, Hy, and Ez or Ex, Ey, and Hz must be chosen as the fields

to simulate. The modes are called transverse electric (TE) and transverse magnetic

(TM) respectively. Interestingly, it can be derived from Maxwell’s equations that

the two modes are uncoupled and will not always produce the same behavior. There

is disagreement on the naming of the different modes. Joannopoulos, for instance,

defines the two modes exactly opposite to the definition used in this work[12].

In terms of the Poynting vector, the two modes represent the only two possible

polarizations for a 2D plane wave. Recall that the Poynting vector ~S is the cross

product of the ~E and ~H fields. The Poynting vector can be rotated about its axis

such that its direction and magnitude remain constant but ~E and ~H are rotated in

the plane normal to ~S . The different orientations of ~E and ~H represent different

polarizations. Polarizations in 3D do not fit into these two categories, and the possible

polarizations are related to the point group symmetry of the structure.
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Figure 3-2: The 3D Yee grid[2].

3.3 The Yee Algorithm

In 1966, Kane Yee developed a simple, efficient, and powerful algorithm for numer-

ically solving Maxwell’s equations on a finite grid[15]. His algorithm is still widely

used today. Yee used a centered differencing scheme [Eq. 3.1a] to solve Maxwell’s

equations [Eq. 1.31] for both the electric and magnetic fields in space and time. Mod-

eling both fields produces robust solutions and allows for the modeling of electric and

magnetic material phenomenon.

A Yee grid for a two dimensional TE mode simulation is illustrated in figure 3-5,

and a 3D gridding is shown in figure 3-2. In the Yee grid, the magnetic and electric

fields are offset from each other by 1
2

of a gridpoint. This allows Yee’s gridding scheme

to implicitly solve Gauss’ divergence laws [Eq. 1.31c, 1.31d] because each ~E field point

is surrounded by a loop of ~H field points, and each ~E field point is surrounded by a

loop of ~H field points. Thus the scheme naturally captures the ideas of Ampere’s and

Faraday’s Laws where flux of an electric or magnetic field through a point induces a

loop of either electric or magnetic field, and evolution of Maxwell’s equations through

time is achieved by employing only the time-dependent curl equations [Eq. 1.31c,

1.31d].
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The Yee algorithm uses a leapfrog timestepping approach, where each timestep is

divided into two parts. In the first half of the timestep the electric field is updated.

In the second half, the magnetic field is calculated using the just updated electric

field values. This approach is explicit and second-order accurate in time because it

is centered in time. Were forward or backward time differencing used, the solution

would only be first-order accurate in time. The Yee discretization of Maxwell’s curl

equations [Eq. 1.31a, 1.31b] is shown below for the x direction:

D
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∆ y

The equations for the y and z directions are similar in form. The 2D equations for

both the TE and TM mode can be found by eliminating the k index and setting

the appropriate fields equal to zero. For TE mode Ex = Ey = 0, and for TM mode

Hx = Hy = 0.

3.4 Boundary Conditions

An absorbing boundary called a perfectly matched layer, or PML, was used in the

simulations presented below. This particular boundary condition was developed by

Berenger[16]. The PML allows for simulation of an infinite computational domain

by attenuating the electromagnetic waves at the boundary with minimal reflection.

Terminating the computational domain or introducing an artificial boundary causes

the electromagnetic waves to be reflected back into the simulation and inhibited
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the initial use of FDTD for electromagnetic simulations. Several other absorbing

boundary algorithms have been proposed, but Berenger’s method remains one of the

most accurate, and also damps waves at angles of incidence other than the normal

angle.

Berenger’s PML exploits the fact that if µ and ε are chosen in two different

materials such that the impedance Z (as described in section 1.3) in each material is

the same, there will not be any reflection at the interface. Furthermore, the waves

can be made to decay with the use of complex values for µ and ε. Berenger’s method

also involves a field-splitting modification of Maxwell’s equations for the gridpoints

in the PML boundary layer that is necessary to decay the waves. An implementation

of the PML coded by Sullivan was incorporated into the developed code[17].

3.5 Computational Setup

The grid layout used to calculate reflectivity band diagrams of dielectric compos-

ites using the finite difference method is illustrated in figure 3-3. A unidirectional

plane wave is generated from a line source, and allowed to propagate through a vac-

cum toward a dielectric structure. The plane wave then interacts with the dielectric

structure and is partially reflected and partially transmitted. The amplitude of the

reflected and transmitted waves changes, but their frequencies do not. The reflected

and transmitted waves are measured at the indicated locations in figure 3-3 after the

system has reached steady state. The reflected signal must be measured behind the

unidirectional source where only the scattered field exists; both the incident and re-

flected waves exist in the region between the source and the structure. Measurement

of the reflected or transmitted wave involves computing the time-averaged power over

a region of gridpoints. The power of an electromagnetic wave is the magnitude of

the Poynting vector,
∣∣∣ ~E

∣∣∣
2

, averaged over time. The reflectivity is the ratio of aver-

age reflected power to average incident power, which is the same as the ratio of the
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time-averaged Poynting vectors. Reflectivity can be expressed as:

Γ =

〈
1
nr

nr∑ ∣∣∣ ~E r

∣∣∣
2
〉

〈
1
ni

ni∑ ∣∣∣ ~E i

∣∣∣
2
〉 (3.3)

where ~E r is the electric field of the reflected wave and ~E i that of the incident wave.

nr and ni are the number of gridpoints over which
∣∣∣ ~E

∣∣∣
2

is summed in the reflected

and incident regions respectively (i.e. spatial averaging). The angled brackets denote

time averaging. It should be noted that because
∣∣∣ ~E

∣∣∣ =
∣∣∣ ~H

∣∣∣ for electromagnetic

waves, the reflectivity could also be measured in a similar manner using the magnetic

field.

The length of time for which the reflected power is averaged must be constrained

to correspond to the passage of an integer number of wavelengths. In this study, 24

periods was found to be sufficient to produce stable results, and transmitted power τ

was measured instead of reflected power. Γ was found from the relationship Γ+τ = 1,

which holds for the perfect dielectrics (i.e. σ = 0) that were simulated. Measuring the

transmitted power produced bandgaps that accurately matched accepted results[18]

and transmitted power was measured when calculating the bandgaps in the appen-

dices. Measuring reflected power directly produced results that occasionally deviated

slightly from the accepted results. The error was not large, and it is possible that

there was an interaction between the reflected waves and the unidirectional source.

Although it is supposed to be transparent, the unidirectional source may have slightly

interacted with reflected waves.

3.6 Parallelization

The software developed was designed to support massive parallelization. The FDTD

approach is easily parallelized for solving general finite difference problems across

multiple CPUs. FDTD simulations were parallelized using a divide and conquer

approach illustrated in figure 3-4a. This approach is well suited for FDTD because

38



Figure 3-3: The computational setup for calculating the reflectivity band diagram of
a dielectric structure.

the central differencing scheme used requires only that the immediate neighbors of a

gridpoint be known in order to advance that gridpoint in time. Thus the large grid

illustrated in figure 3-3 can be divided into many smaller subgrids illustrated in figure

3-4a which can be evaluated in parallel by separate processors.

When the original grid is divided into subgrids, each gridpoint at the boundary

of two subgrids will be missing a neighbor that it needs and which is stored on

an adjacent subgrid, possibly located in the memory of a different CPU. Thus to

insure that every gridpoint can be evaluated, each subgrid must exchange boundary

gridpoints with its neighboring subgrids at the end of each timestep. Exchange of

boundary layers is illustrated with arrows in figure 3-4a. The exchange of boundaries

must be completed at the end of each timestep and before the next timestep can be

evaluated.

The division of the original large grid into several smaller grids for parallelization

was designed to be as transparent as possible for future programmers. Parallelization
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is implemented for an arbitrary number of processors provided by the user at runtime,

and the user does not have to worry about how to divide and distribute the work –

the division is performed automatically. The software contains logic for choosing how

to divide up the initial large grid into smaller subgrids. The software analyzes the

dimensions of the grid to compute which direction to divide it. It is advantageous

to divide the grid in such a way as to minimize the size of the boundaries between

subgrids because these boundary values will be exchanged, possibly over an ethernet

connection which may cause a bottleneck. Each subgrid is a C++ object that keeps

track of its neighboring subgrids and therefore knows its absolute position in the

overall grid. Items that the programmer places in the grid, such as dielectric struc-

tures, plane-wave sources, or measuring points can then be referenced using absolute

coordinates and not the relative coordinates for the specific subgrid that the objects

exist in. Additionally, objects can span multiple subgrids without needing special

attention.

Parallelization was implemented using the Message Passing Interface (MPI) which

is a standard language for writing parallel and distributed programs. Because MPI

is a communication protocol rather than an implementation, it does not require any

specific hardware, operating system, or compiler and works efficiently for many com-

puter configurations. CPUs used for parallel computation can be virtual, located

on a multi-processor system using shared memory, or located on computers that are

networked together.

Parallelization provides two important advantages for electromagnetic FDTD sim-

ulations. First, it provides a measurable speed increase. Figure 3-4b shows that the

running time of a 2D FDTD simulation is improved as more CPUs are added. The

second advantage of parallelizing FDTD simulations is that it eliminates a potential

memory bottleneck. With a single processor simulation, the size of the simulated

system is limited by the size of a grid that can fit in the computer’s memory without

causing a memory overflow. The maximum size of a parallel grid is related to the

sum of the memory in every computer being used to solve the problem. If the system

becomes too big for one node in the cluster, adding more computers will make the
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Figure 3-4: An increase in performance is observed with a parallelized FDTD simula-
tion. A point of diminishing returns is reached for a large number of processors such
that adding an additional processor does not significantly affect the running time of
the simulation.

problem solvable. In this way it’s possible to solve problems on a cluster of computers

that are much too large to solve on any one computer in the cluster alone. Addition-

ally, 32-bit memory addressing limits the size of a grid on a single CPU to 4Gb. With

this parallelization scheme, the 4Gb limit is avoided on 32-bit machines because the

parallelization scheme effectively implements a distributed memory architecture.

3.7 Creating a source with the total/scattered field

formulation

A efficient unidirectional, periodic, angled source was derived for use in FDTD electro-

magnetic simulations. The source was developed by modifying the total-field/scattered-

field boundary as described by Taflove and Hagness[2]. This approach is based on the

idea that for an electromagnetic plane wave interacting with a dielectric, the total
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wave is the sum of the incident and scattered parts:

~E total = ~E inc + ~E scat (3.4a)

~H total = ~H inc + ~H scat (3.4b)

In general, an FDTD electromagnetic simulation will evolve the total field, al-

though it is often the scattered field that is desired for analysis. The incident field is

known because it is defined by the programmer as some time-varying field: often a

plane wave or Gaussian pulse. The scattered field can only be found by subtracting

the incident field from the total field. The simplest way to calculate the scattered

field is to run two simulations. One simulation contains the dielectric structure and

is used to calculate the total field. The second simulation simulates the incident

field on a grid of identical dimensions, but with the dielectric structure replaced by

vacuum (n = 1.0). The scattered field is found at each timestep by subtracting the

incident field from the total field. Although this approach is conceptually simple, it

is inefficient. Twice the number of gridpoints and memory are required, resulting in

the simulation being slow and possibly causing a memory overflow. If the simulation

is run in parallel, twice as many boundary values must be passed between subgrids.

The total/scattered field boundary formulation provides an efficient way of sepa-

rating the scattered field from the total field and allows for the introduction of non-

physical unidirectional transparent sources. A unidirectional source is non-physical

because any line or plane of oscillating fields in a physical system will produce a wave

that propagates away from the source in all directions. Unidirectionality is effectively

achieved by cancelling out the propagation of the wave in one direction, creating a

total/scattered field boundary.

Figure 3-5 illustrates the formulation of the total/scattered field for TE polariza-

tion. A similar figure applies to the formulation for TM. The formulation corrects

inconsistencies that develop at the boundary between a total and scattered field. Such

a boundary is illustrated with white and shaded regions in figure 3-5. The boundary

is located between gridpoints jb and jb + 1/2. Application of the Yee equations re-
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Figure 3-5: A Yee gridding of the electric and magnetic fields for a 2D TE mode
electromagnetic simulation. The total/scattered field formulation is used to create a
unidirectional, transparent source.

veals that the calculation of Ez points at jb and Hx points at jb+1/2 are inconsistent

because one point from the scattered field and one point from the total field are used.

The inconsistency can be resolved by appropriately adding or subtracting the incident

field, which is known by the programmer, after each inconsistent calculation has been

made. The correction terms are:

E
n+ 1

2
z (i, jb) = E

n+ 1
2

z (i, jb)− ∆ t

ε0∆ x
Hn

x,inc(i, jb +
1

2
) (3.5a)

Hn+1
x (i, jb +

1

2
) = Hn+1

x (i, jb +
1

2
) +

∆ t

ε0∆ x
E

n+ 1
2

z,inc(i, jb) (3.5b)

3.8 An Angled Source

The general form of a 1D travelling wave with wavelength λ and period T , travelling

in the x-direction is:

y = sin(kx− wt) (3.6)
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where k = 2π
λ

is the angular wavenumber, x is the position, w = 2π
T

is the angular

frequency, and t is time. As time progresses, the amplitude at each x position changes

and the wave is observed to propagate. In the case of electromagnetic waves propa-

gating through a vacuum, the velocity at which the wave propagates is the speed of

light, c.

In 2D and 3D FDTD electromagnetic simulations, a periodic plane wave can

be generated from a line or plane of discrete gridpoints that oscillate in phase, as

illustrated in figure 3-3. A line of oscillating fields in 2D and a plane in 3D generate a

plane wave because, according to Huygens’ principle, all points on a wavefront serve

as point sources of spherical secondary wavelets. After a time t, the new position

of the wavefront will be that of the surface tangent to these secondary wavelets[19].

Each point on the source line or plane contributes a spherical wavefront to the tangent

surface of a plane wave. However, creating an angled incident wave on a square FDTD

grid is troublesome. A simple solution would be to place the source line or plane at

an angle relative to the grid, but the plane wave source must be periodic so that it

is compatible with periodic boundaries. If the source is simply inclined relative to

the grid, the source is not periodic because the source is not continuous across the

periodic boundaries. The same periodicity argument can be made for keeping the

source fixed and simply rotating the dielectric structure – the rotated structure will

not be periodic. Placing the source at an angle relative to the grid introduces aliasing

as well because an angled line of points cannot be exactly represented on a square grid

– the sampling of points along the line will be non-uniform, and the nonuniformity

will depend on the angle of the source. Low inclination angles would be particularly

troublesome.

If the incident field varies periodically in time along the x-direction of the source

line, an angled plane wave will be generated. Because the systems being investigated

are periodic in the x-direction, the variation of the field in that direction must also

be periodic such that an integer number of wavelengths fits along the x-axis. The

consistency rule is:

mλ = nx sin(θ) (3.7)
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Figure 3-6: Generation of a unidirectional angled plane wave with wavelength λ and
angle θ.

where λ is the wavelength of the angled wave generated, m is an integer and nx is

the number of gridpoints in the x-direction. If the condition is not met, the angled

wave will not be periodic and will be inconsistent with the boundary conditions.

Figure 3-6 shows a unidirectional, periodic, angled plane wave source for a 2D

FDTD simulation. The wavelengths in the x and y directions are labeled as λx and

λy. An equation that describes the amplitude of the 2D plane wave as a function of

position (analogous to Eq. 3.6) is:

y = sin (kx i + ky j − ω t) (3.8a)

y = sin

(
2 π

λx

i +
2 π

λy

j − 2 π

λ
c t

)
(3.8b)

y = sin

(
2 π

λ
(i sin(θ) + j cos(θ)− c t)

)
(3.8c)

When substituted into the total/scattered field equations (Eq. 3.5), the equations

for an angled 2D plane wave for TE mode become:

Ez(i, jb) = Ez(i, jb)− 1

2
sin

(
2π

λ

(
i sin(θ)− ∆ t

ε0∆ x
cos(θ)− c n dt

))
(3.9a)
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1

2
) = Hx(i, jb+

1

2
)+

∆ t

ε0∆ x
sin

(
2π

λ
(i sin(θ)− c (n + .5) dt)

)
1

cos(θ)
(3.9b)

The 1
cos(θ)

term in equation 3.9b projects the angled Hx,inc onto the x-axis of the

grid’s coordinate system. Similar arguments were used to derive angled sources for

TM mode and also in 3D.

3.9 Reflection Error

The PML described in section 3.4 is, unfortunately, not a completely perfect absorber

and this fact has important consequences for the periodic angled source. Because

the PML is terminated at the boundary of the simulation domain, there is a small

nonphysical reflection back into the simulation domain. This reflection error, R(θ),

is found to be[2]:

R(θ) = e−2ση d cosθ (3.10)

where η and σ are the characteristic wave impedance and conductivity of the PML.

Unfortunately for the angled periodic source, the reflection error increases with the

exponential of cos(θ). This means that as the angle of incidence approaches 90◦, the

PML becomes completely ineffective. The angle of incidence used in a simulation

should be kept as small as possible to minimize reflection error and the angled source

should be used cautiously. Reflection error should not prohibit the use of the angled

source because there will be very little error for small angles.
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Chapter 4

2D Dielectric Structures

4.1 A new 2D structure

A quarter wavelength stack (section 2.2) was used as a starting point for developing

a new photonic crystal geometry that may possess desirable optical properties and

potentially a complete photonic bandgap. A drawing of a 2D version of the proposed

structure is shown in figure 4-1 (Chapter 5 deals with an analogous 3D structure).

The design consists of introducing periodic gaps in a 1D quarter wavelength stack, or

alternatively, placing rectangular quarter wavelength stacks on a 1D lattice. Figure 4-

1 also demonstrates the two configurations for which bandgap calculations were made.

Figure 4-1a shows the top configuration, and figure 4-1b shows the side configuration.

In both cases, the computational domain was periodic in the direction normal to the

incident wave vector. For the top direction, an infinite line of stacks with a finite

number of bi-layers was simulated, while for the side configuration a finite number of

stacks with an infinite number of bi-layers was simulated.

In all 2D calculations of the top configuration, 4 bi-layers were used for each

dielectric stack, as illustrated in figure 4-1. It was observed that the addition of more

bi-layers slowed the FDTD simulation but did not significantly change the bandgap

of the structure. However, if a smaller dielectric contrast was used, more layers would

be required to achieve optical performance comparable to that of an infinite stack.

For the side configuration, each stack effectively contained an infinite number
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(a) The direction of incident waves when mea-
suring the bandgap from the top.

(b) The direction of incident waves when measuring the
bandgap from the side.

Figure 4-1: The 2D structure that was investigated consists of periodically arranged
quarter wavelength dielectric stacks. The bandgap was measured for two different
orientations of the incident wave.

of bi-layers because the longitudinal axis of stacks lie perpendicular to a periodic

boundary. Twenty stacks were used in the non-periodic direction. It was observed

that after about ten stacks, the bandgap of the system did not change significantly

as more stacks were added.

The proposed photonic crystal geometry presents a difficult challenge in that there

are many more variables that must be considered in its design when compared to other

1D and 2D photonic crystal geometries. The most important difference when com-

pared to the quarter wavelength stack is that the presence of gaps in the structure

create periodicity in a second direction, forming a 2D photonic crystal. It was hy-

pothesized that the width of the gaps might be controlled so as to produce a bandgap

from the side of the crystal. From the side, the structure is similar to a 1D stack

where one layer has two sandwiched components and the other layer is air (n = 1.0).

This structure has also introduced a third component, another major difference when

compared to most previously studied photonic crystal geometries that incorporate

only two dielectric components.

Several important lengths that characterize the new geometry are illustrated in

figure 4-1. They are the bi-layer thickness a1, the lattice spacing of the columns a2,
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and the diameter or width of each column, d. Investigating the effects of each variable

independently would be time-consuming, but luckily the system can be simplified by

nondimensionalizing several variables. It can be derived from Maxwell’s equations

(and was also verified computationally) that doubling the system size produces the

exact same optical response for wavelengths twice as large – there is no inherent length

scale associated with Maxwell’s equations. Thus a good approach to characterize the

structure is to nondimensionalize the system by fixing the ratio a1

a2
, which can be

thought of as an aspect ratio, and to vary the column width, d. The ratio d
a2

will

be referred to as coverage fraction, because it represents the fractional area that the

dielectric stacks occupy. For all badgaps presented below, a1

a2
= 23

30
= .7667. This ratio

was chosen somewhat arbitrarily because it allowed for integer values of gridpoints for

both dimensions and wavelengths. It is likely that the structure will behave differently

as the ratio is varied, and the effect of the ratio will be the subject of future work.

Wavelengths are reported in a nondimensional unit of λ
a1

, where λ is the wavelength

and a1 is the bi-layer thickness. λ
a1

characterizes a dielectric stack because scaling the

layer thickness will equally scale the quarter wavelength of the stack.

For all 2D studies, the largest realistic dielectric contrast, n1

n2
, was used. A large

dielectric contrast allows for fewer bi-layers in the simulation of a photonic stack.

Although the 1D stack is by definition infinite, a finite stack of high contrast can

have just a few bi-layers and approximate an infinite stack. Maxwell’s equations are

also dielectric contrast independent; doubling the dielectric constants of the system

will produce the same behavior for wavelengths half as large. However, because the

system being investigated contains 3 different dielectrics and nair cannot be changed,

the absolute values of the dielectric constants will come into play. The effect of

absolute index of refraction remains to be investigated. Silicon has one of the highest

indices of refraction for a commonly used dielectric at n = 3.6, and air has the lowest

possible constant at n = 1. Thus for the 2D system described in the next section,

a dielectric contrast of 3.6
1.0

was used. The values used for n1 and n2 were 4.5 and

1.25 respectively. These values were chosen with n2 > nair so that the system would

contain three components. n1 = 4.5 is high for an index of refraction, but it not
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completely unrealistic and could be lowered if the number of bi-layers in the stacks

was increased.

Unlike other photonic crystal structures that are known to posses full bandgaps,

this new geometry has the advantage of potentially being easy to manufacture. Meth-

ods are available to make 1D dielectric stacks via deposition processes, and gaps could

conceivably be introduced into the the structure with a masking process or with a

focused ion beam. The design also naturally lends itself to the introduction of con-

trolled defects. For a 1D quarter wavelength stack, a defect is created by changing the

thickness of one of the dielectric layers, and such a defect could be easily introduced

during deposition of the layers. The defect layer creates a localized region where

frequencies within the photonic bandgap can exist without decaying. The quarter

wavelength stacks on each side of the defect essentially act as mirrors and prevent

the light from escaping from the defect.

This new photonic crystal geomentry may be suitable for some special applica-

tions. The FDTD method has been used to study micropost microcavities[20], which

are quarter wavelength stacks with a defect layer that acts as a cavity. The optical

thickness of the defect layer can be controlled to define the wavelength of light that is

trapped. If a quantum dot is placed in the defect cavity, the quantum dot exhibits en-

hanced spontaneous emission of a stream of single photons[21]. Single photon sources

are necessary for quantum cryptography and quantum computation, and it has been

proposed that strategically designed arrays of microposts might be a candidate for a

new low-threshold, tunable lasing material. Such a structure with defects might also

be useful as a solar collector or tunable light filter.

4.2 2D Photonic Crystal Performance

Bandgaps for the 2D structure were computed using the software described in section

3.5, and important bandgaps are displayed in appendix A. Joannopoulos observed

that TE band gaps are favored in a lattice of isolated high-ε regions, and TM band

gaps are favored in a connected lattice[12]. Kong also remarks that for a solid dielec-
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tric surface, TE waves generally reflect more than TM waves[5]. The structure being

investigated consists of isolated stacks, and both trends was observed during TE and

TM calculations of the top and side bandgaps.

Following the observations of Joannopoulos and Kong, the top TM bandgap is

observed to disappear rather quickly as the periodic gaps are introduced and the

structure becomes disconnected (figure A-2). At a coverage fraction of 70% for in-

stance, the bandgap has already closed. For the TE mode however (figure A-1), the

top bandgap persists and remains wide, even at low coverage fractions. A sizeable

bandgap was found to exist at coverage fractions as low as 10%, as is shown in fig-

ure A-1j. The progression of the bandgap with decreasing coverage shows that the

bandgap narrows and shifts toward shorter wavelengths: a blue shift. The fact that

the bandgap persists reveals the suprising result that, for the top-down TE case, the

structure is a perfect dielectric mirror even though it is full of holes in the direction

of propagation of the incident light. For the 10% coverage case, consider that the

structure is 90% empty space yet maintains a bandgap. The same phenomenon is

observed in 3D in chapter 5, and an explanation for why a structure with such a large

fraction of holes may act as a perfect mirror is ventured in chapter 6.

Appendix figures A-3 and A-4 show bandgaps calculated from the side for both

TE and TM modes, respectively. The shape of the reflectivity plots is noticeably

different from the side than from the top for both polarizations. The TE plots in

figure A-3 show the existence of several bandgaps that persist over a wide range of

coverage fractions. These gaps appear to merge as coverage is decreased. As with

the top bandgap, the gaps appear to shift toward the blue frequency range as the

coverage fraction is decreased. The primary gap is the widest for coverage fractions

around 40%. The trends for TM mode from the side (figure A-4) are similar to TE.

Multiple bandgaps are observed at a few coverages but, unlike the TE case, the higher

order gaps are narrow and the primary gap is spike-shaped. Like the TE side gap,

the TM gap also appears to be largest around 40% coverage. However, unlike TE,

the gap does not quite open at very high and very low coverages.

For the structure to have a complete 2D bandgap, it is necessary for a gap to exist
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Figure 4-2: A comparison of the top and side TE bandgaps for the 1D array of
dielectric stacks with a coverage fraction of 30%. Significant overlap is observed for
TE mode, suggesting that the 2D structure may have a full TE bandgap.

for both top and side directions and for both polarizations over the same frequency

range. Additionally, the gap must exist for all angles of incidence. Although angle

of incidence was not varied (all calculations were performed for normal incidence), it

can be concluded that this 2D structure does not have a complete gap because there

is no coverage fraction for which the top and side TM bandgaps overlap at a normal

angle of incidence. The top TM bandgap provides the most difficulty, appearing only

at high coverages where the side bandgaps are small or non-existant.

Significant overlap for the two TE bandgaps is observed and it is possible that

the structure may have a complete TE 2D bandgap. Figure 4-2 shows an overlay of

the two directional bandgaps for the coverage fraction of 30%, which produced the

largest overlap. The overlapping region is highlighted with a grey bar. The fractional

width of the overlapping region is approximately 30%, making it a very wide overlap.

Generally, a bandgap is considered to be wide when its fractional width, as measured

by dividing the width of the bandgap by the value at its center, exceeds 10%. The

TM side bandgap overlaps both TE gaps a small amount at 30% coverage, and it is

possible that optimizing the aspect ratio of the system might permit this overlap to

be increased. However, I am pessimistic that any dimensional changes could be made

that will maintain the top TM bandgap to low coverage fractions.
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Chapter 5

3D Dielectric Structures

5.1 A new 3D structure

A 3D structure was designed and analyzed using the same strategy as for the 2D

structure of section 4.1. The 3D structure, illustrated in figure 5-1, is a square lattice

of rectangular-column quarter wavelength stacks. Rectangular columns were chosen

over cylindrical columns because the rectangle does not exhibit aliasing effects when

scaled on a square grid. If cylindrical columns were represented using the current

gridding scheme for instance, the grid resolution would be yet another variable to

consider. Cylindrical columns with a large diameter would be well resolved when

drawn on a rectangular grid, but those with a small diameter would be blocky and

rough. The error associated with representing a cylindrical column on a rectangular

grid for FDTD simulations is unknown, although it has been observed that perhaps

aliasing does not have much of an effect and instead it is the periodicity of the

structure that characterizes the bandgap[1]. Nonetheless, square columns were used

to eliminate this potential source of error.

Simulating the structure in 3D presents several challenges not encountered in 2D.

First, the running time of the simulation increases due to the fact that the number of

gridpoints has increased. The 2D simulations only had to store three field components

(Either Hx, Hy, and Ez for TE mode, or Ex, Ey, and Hz for TM mode), but for 3D

all six field components (x, y, and z for both ~E and ~H ) must be stored. Thus in
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addition to their being more grid points for the third dimension, the equation for

evolving each grid point contains more terms and is slower to compute.

Figures 5-1b and 5-1c show the dimensions that were used to characterize the 3D

structure. The bird’s eye view shows that the the columns have a square cross-section

and are arranged on a square lattice. There is 4-fold rotational symmetry along this

axis. This means that, if the longitudinal axis of the columns is aligned along the

z-axis as shown in the figure, it is not necessary to distinguish between the x-axis

side bandgap and y-axis side bandgap because of symmetry. Thus the term “side

bandgap” now refers to either the x or y axis.

4-fold rotational symmetry simplifies the system considerably. Without it, the

columns would be characterized by two widths, there would be two lattice constants,

and bandgaps along all three axes would have to be calculated. Symmetry also allows

the system to be nondimensionalized and compared to its 2D counterpart. The 3D

structure was nondimensionalized in the same manner as the 2D structure (section

4.1) by setting the aspect ratio a1

a2
= 23

30
. As with the 2D structure, plane wave

wavelengths are presented in nondimensional units of λ
a1

, but in 3D the coverage

becomes
(

d
a2

)2

. The squaring operation emphasizes that in 3D the the stacks have a

2D cross-section, whereas in 2D the stacks had a 1D cross-section.

Although TE and TM modes were defined as 2D concepts in section 3.2, analogous

modes exist in 3D but are dependant on the point group symmetry of the system.

Because of the superposition principle of electromagnetic waves, it is possible to break

any incident wave into two orthogonally polarized components. Consider the plane

wave illustrated in figure 5-1b that is incident upon the top of the array of stacks: the

Poynting vector of the plane wave is parallel to the z-axis of the columns, with the

~E field and ~H field in the x-y plane. The dielectric structure has 4-fold symmetry

around the z-axis. As the ~E and ~H fields are rotated about the z-axis, the dielectric

environment they experience will change with the degree of rotation. After a rotation

of 90◦, the two fields will be back in identical positions. Because of this rotational

symmetry, these two orthogonal polarizations must be equal. Thus the reflectivity of

any arbitrarily oriented polarization along the 4-fold axis will be isotropic.
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The side configuration has 2-fold rotational symmetry along the incidence axis

(either x-axis or y-axis), and thus two polarization conditions exist. If ~E and ~H are

restricted to being parallel to principle axes for simplicity, one condition puts the ~E

field along the longitudinal axis of the columns (Ez-polarized), and the other puts

the H field along the longitudinal axis (Hz-polarized). Because of the principle of

superposition of waves, all other polarization angles can be broken into components

that are Ez-polarized and Hz-polarized.

5.2 3D Photonic Crystal Performance

The 3D structure, like its 2D counterpart, has indices of refraction of n1 = 4.5 and

n2 = 1.25, and bandgaps for the top and side configurations of the structure can

be found in Appendix B. As discussed in the previous section, there is no need

to specify polarization for the top configuration due to the 4-fold symmetry axis,

but two polarizations, Ez and Hz, exist when measuring the side bandgap. The

trends observed for the 2D structure appear in analysis of the 3D structure. The

top bandgap (figure B-1) exists for high coverage fractions, and decreases in width

and shifts toward lower wavelengths as coverage is decreased. Because the top gap

persists with decreasing coverage, it suggests that an array of stacks may be a perfect

dielectric mirror under certain conditions. When compared to the 2D top bandgaps

in Appendix A, the 3D bandgaps appear qualitatively similar to the TE gaps at high

coverage, and similar to the TM gaps at low coverage. Recall that coverage fraction

for the 3D structure is
(

d
a2

)2

, so coverage fraction should not be used to directly

compare 2D and 3D results. Nonetheless, it is interesting to look for qualitative

similarities in the shapes of the 2D and 3D bandgaps. Whether there is any physical

explanation for such similarities remains to be investigated.

Bandgaps for Hz polarization are shown in figure B-2 and for Ez polarization

in figure B-3. The bandgaps for the two polarizations appear to be qualitatively

similar, with a primary bandgap opening at roughly 3 wavelengths for middle to low

coverages. The Hz gap is wider than the Ez gap and is also sustained over a larger
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(a) A perspective view of the structure. Incident waves are shown for the top and side config-
urations.

(b) A bird’s eye view from the top of the
3D photonic crystal.

(c) The 3D photonic crystal as viewed from
the side.

Figure 5-1: Views from different angles of the 3D dielectric structure that was studied.
The structure consists of rectangular-prism dielectric stacks arranged in a square
lattice. Characteristic lengths are labeled. d is the width of a column, a1 is the
thickness of a bi-layer, and a2 is the lattice spacing of the columns.
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range of coverages. Higher order bandgaps are seen at shorter wavelengths, and they

appear to be more significant for the Hz polarization. For several coverages, these

side bandgaps overlap with the top bandgap. Figure 5-2 shows an overlay of the

top and side bandgaps for the coverages that showed high degrees of overlap. Gray

boxes highlight regions of overlap where optimizing architectural parameters might

lead to the development of an overlapping bandgap for all three polarizations. The

progression from 81% to 64% to 49% coverage shows the Ez gap starting to form

while the top gap disappears and shifts to the left. For Hz, the width and position

relative to Ez do not vary much. Thus for the aspect ratio chosen, it appears that

if an overlapping bandgap exists for this system, it should between 49% and 81%

coverage.
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Figure 5-2: A comparison of the top and side bandgaps for the square array of
dielectric stacks for various coverage fractions. An overlapping bandgap for all three
modes is not quite opened, but the results suggest that such an overlap may be
possible. Gray boxes are used to illustrate areas of high overlap.
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Chapter 6

Discussion

6.1 Discussion of results

The results of chapters 4 have several exciting consequences. The first is that an

array of dielectric stacks has unexpected optical properties, and there is potential for

a structure with overlapping bandgaps along different axes and potentially a complete

bandgap. It was also found that an array of dielectric stacks exhibit a bandgap from

the top, despite the fact that the structure is partially hollow. A plausible explanation

may exist for why a structure with holes completely through it can be a perfect mirror,

and it is possible that the physics may be exploited to make a variety of interesting

devices. If the distance between the gaps is roughly the same size as the wavelength

of the incident wave, the incident wave will be diffracted as it passes though the

gap. When the light is diffracted, it will spread out as it enters the structure and

eventually enter one of the dielectric columns. Because the columns are quarter

wavelength stacks that reflect frequencies of light that lie within the bandgap, they

will perfectly reflect the light that is diffracted into them. If the dielectric constants

of the components in the stack are large, the light will tend to be confined within the

column due to the principle of total internal reflection. The columns are surrounded

by air with the lowest possible dielectric constant, and electromagnetic waves tend to

be be confined within high refractive index materials. This confinement within the

column may result in the light being completely reflected.
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A second observation is that the structure might be improved by switching to

a hexagonal lattice or by inverting the structure so that it consists of arrays of air

columns in a 1D dielectric stack. Simulating cylindrical columns may also prove

advantageous. Joannopoulos observed that, for 2D photonic crystals, a square lattice

of dielectric circles did not have a TM bandgap, but a hexagonal lattice of circles or

a hexagonal lattice of air holes possessed a complete 2D photonic bandgap[12].

The third observation is that these structures are geometrically simple and finite

yet exhibit large bandgaps. This suggests that useful structures might be able to

be manufactured for applications, and controlled defects could be introduced very

easily and may be used to optimize the behavior of the structure. When compared

3D photonic crystals that are known to have complete bandgaps such as dielectric

spheres on a diamond lattice[22], the Yablonovite structure[13], or several of the

triply periodic minimal surfaces[23], the stack array geometry is much simpler to

manufacture and might be modified to be self-supporting. The columns are not self-

supporting since they are surrounded by air, but it seems reasonable that if they

contain enough bi-layers, they could be attached to a substrate with no effect on the

optical performance of the crystal. Alternatively, a structure consisting of arrays of

air columns in a 1D stack would be self-supporting.

6.2 Discussion of software

6.2.1 Philosophy on Reusable Software

One of the goals of this work has been to develop a versatile toolbox of code that can

be used for a variety of simulations in place of developing many smaller stand-alone

programs. Often, scientific simulations are written such that the actual simulation

code, which is generally quite short, is embedded among housekeeping type functions

such as input/output routines, parsing routines, mathematical procedures, etc. Al-

though this approach is often quick to yield results, it is not at all modular and is thus

difficult to debug, modify, and re-use, and, most importantly, produces code that is
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difficult for other scientists to use and understand. Considerable effort was invested

in this this work to make sure the software was written cleanly and efficiently and is

re-usable.

The design of this software is based on a grid object that can be used to write short

libraries of code (similar in nature to shell scripts) that solve finite difference prob-

lems on a single processor or in parallel. Currently, libraries implementing Maxwell’s

equations, Cahn-Hilliard dynamics, and diffusion have been written, and the libraries

themselves are short and easy to comprehend. The grid framework consists of a C++

object class and a collection of optimized macros and functions defined to operate

on the grid. Grids can be written and loaded from files and there are functions that

initialize the grid, set the boundary conditions, and execute macros that calculate

spatial derivatives, laplacians, gradients, divergence, curls, cross products, dot prod-

ucts, and other mathematical operations. When run in parallel, the grid objects keep

track of their neighboring grids and exchange boundary values at the end of each

timestep.

Use of the grid objects will allow different simulations to be coupled. A grid object

could be used for a Cahn-Hilliard phase-field simulation, and then mapped to another

grid of dielectric constants which could then be analyzed using the Maxwell equations

library. The result would be a simulation that measures the optical properties of a

system undergoing Cahn-Hilliard evolution.

6.2.2 Implementation of Fourier Analysis

Application of Fourier analysis to the electromagnetic simulations presented in this

work is an important next step that should speed up the calculation of photonic

bandgaps by at least two orders of magnitude (see section 2.3). Such a speed up

will make investigation of angle of incidence in 3D possible. The current approach

for calculating reflectivity involves iterating over a range of incident wavelengths and

measuring reflectivity from the steady-state conditions that result at each wavelength.

With this method, a new simulation is run for each wavelength considered. This ap-

proach is easy to understand and implement, but very inefficient. An entire reflectivity
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bandgap could be calculated from one simulation of a Gaussian pulse because, unlike

a plane wave that contains only one frequency, a pulse contains a wide frequency

spectrum. The Fourier transform of the response of the dielectric structure to the

pulse can be examined to determine the reflected power for each frequency contained

in the pulse. The response function of the system can also be used to determine how

the system will respond to any other input signal through the use of a convolution

[Eq. 2.2].

6.2.3 A Monte Carlo Method for Optimizing Bandgaps

The problems studied in this work may lend themselves to the application of a Monte

Carlo optimization method for finding geometries with unique optical properties.

Analysis of the 3D structure in this work showed, among other things, that many

variables characterize a system that behaves in unexpected ways. The selection of

dimensions and values for variables was, in some cases, arbitrary, and it is possible that

important behaviors are being missed. Additionally, much time is spent preparing

and managing input files and then plotting and analyzing results. Thus a Monte Carlo

method could be implemented to help automate the process of optimizing bandgaps

of dielectric structures. It would be necessary to write code to generate input files

and then analyze their bandgaps, perhaps by measuring the width of the bandgaps

and noting their centers. This code would then assign a ranking to the structure after

considering the bandgap at other angles of incidence and polarizations. A random

parametric perturbation would then be made to the structure, such as a change in

aspect ratio, coverage, or dielectric constants, and a new ranking would be calculated

and parametric derivatives obtained. If the new structure showed improvement, it

would be kept some fraction of the time related to the amount of improvement it

showed, and the process would be repeated until a more desirable structure is found.
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6.2.4 Public software release

A preliminary public release of the software with an open source license is anticipated

in the near future after the code can be cleaned up and packaged for other users. The

software will be available for Windows, Linux, and Mac OS. The initial release will

contain libraries for running finite difference electromagnetic simulations, phase-field

simulations, and diffusion simulations in parallel. The eventual goal of the software

will be to couple these simulations with other methods such as finite element and

meshless techniques to solve complex physics problems.

6.3 The Future: Multi-physics Modeling

Materials behave in complex, extremely non-linear ways, and there are important

and novel material phenomenon that cannot be observed except through coupling of

properties. There is a class of materials including ferroelectrics and shape memory

alloys, where the application of one field could change a material’s structure or ge-

ometry to effectively produce a different material. These interesting behaviors are

derived from coupled interactions within the materials. The possibility of coupling

many optical, electrical, and mechanical properties together in a computer simulation

toolbox of reusable code will aid in the development of active materials: materials

that react to their environment in intelligent ways and could be used to make novel de-

vices, switches, and sensors. Multi-physics modeling appears to be an important field

of scientific study in the computational domain in which there space for significant

progress to be made.

It has shown that the realistic bounds on materials property space have been

reached, and there is evidence to suggest that it is better to develop clever mixtures

and geometrical configurations of materials that optimize multiple properties rather

than looking for new materials that meet a strict list of design requirements[24].

Composite materials such as fiberglass, steel-reinforced concrete, and carbon-fiber

weaves are being utilized for their improved mechanical properties. Two materials,

each with a desirable mechanical property, are blended to create a new material
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with the desirable properties of each of its components. Multi-physics computational

modeling seeks to expand upon this idea to create materials with novel behavior by

solving simultaneously for complex interactions between mechanical, optical, elec-

trial, magnetic, thermal, ordering, and symmetry properties. Materials that will be

particularly interesting to simulating include piezoelectrics, shape memory materials

(exotic shape memory polymers that react to light have recently been discovered[25]),

photonic crystals that can be used to mold the flow of light[26, 27], solar cells, liquid

crystals, semiconductors, and magnetic materials.

The study of multi-physics will open the door to the development of active mate-

rials: materials that, through coupling, react intelligently to their environment and

can be used as novel sensors. These could be things like a light filter that can be

tuned by an applied stress or electric field, materials that have a memory of their

environment, or materials that respond in unique ways to light, sound, heat, or other

fields. Novel geometrical constructions of these materials, such as triply periodic bi-

continuous minimal surfaces, which have been shown to optimize multiple properties,

will also be investigated[23, 28].
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Appendix A

Reflectivity band diagrams for the

2D structure
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Figure A-1: TE bandgap from the top direction of the 2D array of dielectric stacks
with n1 = 4.5 and n2 = 1.25 for various coverage fractions (d/a2).
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Figure A-2: TM bandgap from the top direction of the 2D array of dielectric stacks
with n1 = 4.5 and n2 = 1.25 for various coverage fractions (d/a2).
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Figure A-3: TE bandgap from the side direction of the 2D array of dielectric stacks
with n1 = 4.5 and n2 = 1.25 for various coverage fractions (d/a2).
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Figure A-4: TM bandgap from the side direction of the 2D array of dielectric stacks
with n1 = 4.5 and n2 = 1.25 for various coverage fractions (d/a2).
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Appendix B

Reflectivity band diagrams for the

3D structure
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Figure B-1: Bandgap from the top direction as a function of coverage for the square
array of 3D stacks with n1 = 4.5 and n2 = 1.25.
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Figure B-2: Hz polarized bandgap from the side direction as a function of coverage
for the square array of 3D stacks with n1 = 4.5 and n2 = 1.25.
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Figure B-3: Ez polarized bandgap from the side direction as a function of coverage
for the square array of 3D stacks with n1 = 4.5 and n2 = 1.25.
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