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Quantitative phase-field modeling of dendritic electrodeposition
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A thin-interface phase-field model of electrochemical interfaces is developed based on Marcus kinetics for
concentrated solutions, and used to simulate dendrite growth during electrodeposition of metals. The model is
derived in the grand electrochemical potential to permit the interface to be widened to reach experimental length
and time scales, and electroneutrality is formulated to eliminate the Debye length. Quantitative agreement is
achieved with zinc Faradaic reaction kinetics, fractal growth dimension, tip velocity, and radius of curvature.
Reducing the exchange current density is found to suppress the growth of dendrites, and screening electrolytes
by their exchange currents is suggested as a strategy for controlling dendrite growth in batteries.
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Understanding the cause of dendrite growth during elec-
trodeposition is a challenging problem with important tech-
nological relevance for advanced battery technologies [1].
Furthermore, controlling the growth of dendrites would solve a
decades-old problem and enable the use of metallic electrodes
such as lithium or zinc in rechargeable batteries, leading to
significant increases in energy density.

Due to the complexity of observed deposition patterns
though [2–5], a complete theoretical understanding of the
formation of dendrites from binary electrolytes has not been
developed. Modeling of electrodeposition has largely focused
on analysis of diffusion equations without consideration
of morphology [6–10], or variations of diffusion-limited
aggregation [1,11] which are applicable only at the limit of very
small currents, and which do not account for surface energy.

In contrast, the phase-field method [12,13] has succeeded
at quantitatively modeling dendritic solidification at the limit
of zero reaction kinetics [14–16], but has had only limited
application to electrochemical systems with Faradaic reactions
at the interface. The advantage of the phase-field method is that
boundaries are tracked implicitly, and interfacial energy, inter-
face kinetics, and curvature-driven phase boundary motion are
incorporated rigorously.

Phase-field models of electrochemical interfaces have
recently been developed [17–23] and applied to dendritic
electrodeposition [20,21,23], but these models suffer from
significant limitations. Perhaps the most serious oversight
in current electrodeposition models is the assumption of
linearized or Butler-Volmer kinetics. It has been known for
several decades that even seemingly simple metal reduction
reactions are in fact multistep and limited by electron transfer
[24,25]. As a consequence, curved Tafel plots that deviate from
Butler-Volmer kinetics have been reported for zinc reduction
[26,27].

Simulating experimental length and time scales is a second
challenge. Guyer et al. [17,18] provided a diffuse-interface
description of charge separation at an electrochemical interface
capable of modeling double layers and Butler-Volmer kinetics,
but the model is essentially too complex for practical use.
The evolution equations are numerically unstable and require
high temporal and spatial resolution, limiting simulations to
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one dimension. Shibuta et al. [20] addressed the length and
time scale challenge with a thin-interface electrodeposition
model, but did not implement Butler-Volmer reaction kinetics
or apply the correct electroneutrality condition. These short-
comings were addressed in a follow-up paper [21], although
Butler-Volmer kinetics is merely approximated with nonlinear
diffusivity.

This Rapid Communication presents a phase-field model
for electrodeposition that addresses both the reaction kinetics
and the length and time scale issues. A consistent form of
Marcus kinetics for concentrated solutions is incorporated, and
the model is derived in the grand canonical ensemble [28] with
an antitrapping current included [15,16] to permit simulation
of experimental length and time scales.

Free energy formulation. To show the relation to previous
electrodeposition models, the phase-field model is presented
first in terms of free energy, and then extended to the
grand free energy so that the interface can be widened
for computational efficiency without introducing nonphysical
jumps in chemical potential [28]. The free energy functional
for an electrochemical interface is [17,18,29]

F [ξ,ci,φ] =
∫

V

[
f (ξ,ci) + 1

2
κ( �∇ξ )2 + ρφ

]
dV. (1)

The electrostatic self-energy included in [17,18] has be
neglected for the neutral electrolyte considered here. ξ is
an order parameter that distinguishes the electrode (ξ = 1)
from the electrolyte (ξ = 0), ci are the mole fractions of the
chemical species (for a binary system, anions, cations, and
a neutral species), φ is the electric potential, f (ξ,ci) is the
homogeneous Helmholtz free energy density, κ is the gradient
energy coefficient, and ρ = ∑

i ziFci is charge density.
The homogeneous free energy f (ξ,ci) is an interpolation

between the free energies of the electrode and electrolyte,
which are assumed here to be ideal solutions:

f (ξ,ci) = f sp(ξ ) + f l[1 − p(ξ )] + Wg(ξ ),

f s,l =
N∑

i=1

ciμ
◦s,l
i + RT ci ln(ci).

(2)

μ
◦s,l
i = −RT ln(c◦s,l

i ) are the chemical potentials of the pure
components, p(ξ ) = ξ 3(6ξ 2 − 15ξ + 10) is an interpolation
function, g(ξ ) = ξ 2(1 − ξ )2 is a double-well function, and
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W sets the height of the energy barrier between the phases. The
physical quantities of surface energy γ and interfacial width
δ are related to the model parameters and choice of g(ξ ) [30]

according to γ =
√

κW
18 and δ =

√
8κ
W

.
Grand canonical formulation. A problem now arises if

δ is chosen to be larger than the physical width of the
interface, which may only be a few nanometers. If the
interfacial points interpolate between two free energies at
the same composition, as in Eq. (2), the energy of the
interfacial points lie above the common tangent line. As a
result, widening the interface for computational necessity adds
more nonequilibrium material, creating a nonphysical jump
in chemical potential and exaggerated solute trapping. This
issue has been a recent focus of phase-field modeling, leading
to so-called thin interface formulations that eliminate these
nonphysical effects [15,16,31,32].

Plapp recently showed that thin-interface formulations can
be unified with a model derived in the grand canonical
ensemble [28]. Following his approach, the grand free energy
functional for an electrochemical system is

�[ξ,μ̂i,φ] =
∫

wsp(ξ ) + wl[1 − p(ξ )]

+Wg(ξ ) + 1

2
κ(∇ξ )2 + ρφ dV, (3)

where ws and wl are the homogeneous grand energy densities
of the solid electrode and liquid electrolyte, respectively.
Compared with the free energy functional, the grand energy
functional exchanges concentration ci for chemical potential
μi as the natural variable. As Plapp noted, equilibrium between
phases involves the intensive variable chemical potential,
but equations of motion are derived for concentration, the
conjugate variable. As a result, alloy phase-field models
formulated in terms of a phase variable and concentration
do not necessarily establish constant chemical potential at
equilibrium.

Treating μ̂ as the natural variable has an additional numer-
ical benefit for simulation at low electrolyte concentrations.
As ci → 0, the slope of the free energy curves becomes steep
due to entropy, and very small fluctuations in ci lead to large
changes in energy, causing numerical instability. This phe-
nomenon appears to have restricted the range of feasible elec-
trolyte compositions in other phase-field models [20,21]. With
μ̂ as the natural variable, however, energy changes are much
less sensitive to fluctuations, and much more robust at low ci .

The grand energies are found from a Legendre transform
of the free energies, w = f − ∑N

i=1 niμi = f − ∑N
i=1 ciμ̂i ,

where ni is the number of moles of component i and μi = ∂f

∂ni

is its chemical potential. For a system with a fixed number
of substitutional atomic sites, ci is the mole fraction of
component i, and μ̂i = ∂f

∂ci
is its diffusion potential [33], a

difference in chemical potentials [34]. For an ideal solution,
the homogeneous grand free energies are thus ws,l = μ

◦s,l
N +

RT ln(cs,l
N ), where N is the neutral component defined by a

mole fraction constraint.
Thermodynamic equilibrium between two phases implies

that the diffusion potential of each component is the same in
both phases: μ̂i = ∂f s

∂ci
= ∂f l

∂ci
. The diffusion potentials for an

ideal solution [Eq. (2)] are μ̂i = μ
◦s,l
i − μ

◦s,l
N + RT ln ( c

s,l
i

c
s,l
N

),

which can be inverted to obtain the equilibrium concentration
in each phase:

c
s,l
i (μ̂) = e(μ̂i−ε

s,l
i )/RT

1 + ∑1−N
j=1 e(μ̂j −ε

s,l
j )/RT

, (4)

where ε
s,l
i = μ

◦s,l
i − μ

◦s,l
N . The total concentration is an

interpolation between the two equilibrium concentrations:
ci = [1 − p(ξ )]cl

i + p(ξ )cs
i .

Reaction kinetics. When a voltage is applied across the
interface, Faradaic reactions occur and a current is generated.
Reaction kinetics are incorporated into the phase evolution
equation by matching the velocity of the sharp-interface limit
of the phase-field model to the current-overpotential equation:

i = i0(e−αnFη/RT − e(1−α)nFη/RT ), (5)

where i0 is the exchange current density, η is overpotential, and
α is the transfer coefficient, defined according to the Marcus
theory of electron transfer [35,36] as α = 1

2 + nFη

2λ
, where λ

is the reorganization energy. Marcus kinetics, which has been
measured for zinc [26], is an approximation at small overpo-
tentials of Marcus-Hush-Chidsey kinetics [37]. The exchange
current density is assumed to be constant, a reasonable as-
sumption for metals such as zinc where the exchange current is
insensitive to electrolyte concentration [38], a consequence of
a rate-limiting step which does not involve a solvated ion [25].

Overpotential is defined variationally as a local field
quantity following other phase-field models of electrokinetics
[36,39]:

nF
Vm

η[ξ,μ̂i]= δ�

δξ
=Wg′(ξ ) +p′(ξ )(�ω + φ�ρ)− �∇ · κ �∇ξ,

(6)

where �ω = ωs − ωl and �ρ = ρs − ρl . The total interfacial
overpotential is an integral of this field across an interface,
ηt = 1

Aδ

∫
η[ξ,μ̂i] dV , where A is the area of the interface and

Aδ is the volume of the diffuse interface.
The phase-field evolution equation is then found by

matching the velocity of the sharp interface limit of the phase
equation to Eq. (5) [22,23]. The evolution equation is

∂ξ

∂t
= Vmγ

nFκ
i0(e−αnFη[ξ,μ̂i ]/RT − e(1−α)nFη[ξ,μ̂i ]/RT ). (7)

Figure 1 illustrates that this kinetic equation for the diffuse
interface accurately reproduces the Tafel behavior of Eq. (5).

Diffusion. Evolution equations for μ̂i are derived from the
conservation law ∂ci

∂t
= −�∇ · �Ji by recognizing that ci is a

function of ξ and μ̂i in the grand ensemble:

∂ci

∂t
= −�∇ · �Ji = ∂ci

∂ξ

∂ξ

∂t
+ ∂ci

∂μ̂i

∂μ̂i

∂t
. (8)

This equation can be rearranged to express the time evolution
of μ̂i as

∂μ̂i

∂t
= − 1

χi

(
�∇ · �Ji + p′(ξ )

[
cs
i − cl

i

]∂ξ

∂t

)
(9)
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FIG. 1. Tafel plot for zinc deposition from a 0.1 M ZnSO4

solution showing agreement between the phase-field model with an
interfacial width of 1 μm, the sharp interface limit [Eq. (5), Marcus
kinetics], and experimental observation [38].

where χi = ∂ci

∂μ̂i
, �Ji = −Mi[cN

�∇μ̂i + ziF �∇φ] + �Jat + �q,

Mi = Dici

RT
according to the Nernst-Einstein relation, �Jat =

−√
κ

2W
(cl

i − cs
i ) ∂ξ

∂t

�∇ξ

| �∇ξ | is an antitrapping current that elimi-

nates excessive solute trapping at the interface [15,16], and �q
is a Langevin noise term accounting for thermal fluctuations
[14]. A derivation of this flux equation is presented in the
Supplemental Material [40].

Electroneutrality. At this point the interface can now be
widened without introducing a jump in chemical potential.
However, Poisson’s equation still places a severe practical
restriction on the width of the interface, since the Debye
length is typically on the order of 1 nm. Thus is it neces-
sary to ignore effects of the double-layer structure and to
assume electroneutrality. Experimental observations support
the assumption that it is not necessary to consider space-charge
effects when considering the stability of electrodeposits [7].
An additional benefit of electroneutrality is the simplification
of the model so that it is only necessary to explicitly track the
movement of cations.

Importantly, electroneutrality does not imply that Laplace’s
equation holds in place of Poisson’s equation. Instead, φ

must be found from an expression for current conservation,
nF
Vm

( ∂c+
∂t

− ∂c−
∂t

) = −�∇ · i = 0, with the following constraints
introduced by electroneutrality c = c+ = c−, n = z+ = −z−,
and μ̂ = μ̂+ = μ̂−. The electroneutrality condition becomes

�∇ · ((D+ − D−)c cN
�∇μ̂) + �∇ · (nF(D+ + D−)c �∇φ) = 0,

(10)

where D+ and D− are the diffusivities of the cations and
anions in the electrolyte [41]. Additionally, the application
of electroneutrality to Eq. (6) implies that ρl = 0 and ρs =
−nFcs , so that �ρ represents the electrons required to create
neutral cs from cl

+ ions in the electrolyte.
Computation. The model was made nonvariational by

changing the interpolating function in Eq. (9) to p(ξ ) = ξ

for numerical efficiency, and as required for the antitrapping
current [14–16,28]. Because zinc has a hexagonal crystal

TABLE I. Parameters employed to model zinc electrodeposition
from a binary ZnSO4 electrolyte.

Variable Description Value Source

n Electrons transferred 2 [25]
γ Surface energy 0.5 J/m2 [42]
Vm Molar volume 9.16 cm3 [43]
D Mutual diffusivity 3.68 × 10−10 m2/s [44]
t+ Transference number 0.4 [45]
i0 Exchange current density 28 A/m2 [38]
α Transfer coefficient 0.5 [38]
λ Reorganization energy 120 kJ/mol [26]

structure that strongly affects dendrite morphology [2,3], six-
fold anisotropy in the interfacial energy was implemented us-
ing the standard approach [46] with γ (θ ) = γ [1 + ε6 cos(6θ )],
where θ is the angle between the surface normal and the
crystallographic axes, and ε6 = 0.01 sets the strength of the
anisotropy. The evolution equations [Eqs. (7), (9), and (10)]
were solved using multigrid techniques detailed in the Sup-
plemental Material [40]. Other simulation parameters are
presented in Table I.

The model was parametrized in terms of a dimensionless
Damkohler number, which expresses the relative importance
of the reaction rate to diffusion, Da = i0Vm/nF

D/L
, where i0 is

the exchange current density, n is the number of electrons
transferred, D is the electrolyte diffusivity, and L is the
distance between the two electrodes. Two-dimensional (2D)
simulations were performed for direct comparison with exper-
imental morphologies obtained from 2D thin-cell geometries.

Results. Figure 1 shows the success of the phase-field model
at reproducing Marcus kinetics while addressing the length
scale challenge. The interface was widened by roughly three
orders of magnitude to 1 μm, yet the underlying nonlinear
kinetics occurring at the scale of the electric double layer were
accurately reproduced.

Figure 2 examines the effect of the Damkohler number on
dendrite growth morphology, revealing that low Damkohler
numbers have a dramatic effect on suppressing the formation
of dendrites. Reaching a kinetically limited regime before
reaching a transport-limited regime is like imposing a speed
limit on the velocity of the interface, lessening the disparate
interface velocities that lead to dendrites. Dendrites grow when
the electric field concentrates at protrusions, increasing the
local overpotential and enhancing growth. As dendrites grow
taller they attract more electric field lines and screen their
shorter neighbors, whose growth eventually ceases (see video
in the Supplemental Material [40]).

Surface energy anisotropy plays an important role in growth
morphology as well [2]. Zinc has a hexagonal crystal structure
and tends to grow branching or fractal dendrites, while lithium,
with a cubic crystal structure (less inherent anisotropy), grows
needlelike dendrites. Simulation with fourfold anisotropy,
as shown in Fig. 3 and the Supplemental Material, indeed
produces needles.

In the diffusion-limited regime, fractal dimension has
proved to be a reliable measure for electrodeposits, with that of
zinc consistently measured in the range 1.60–1.75 [2,4,5,47].
Using the box counting method [48], the fractal dimension of
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(a) Da=.1 (b) Da=1 (c) Da=10

FIG. 2. (Color online) Simulated electrodeposition morpholo-
gies from a 1 M ZnSO4 electrolyte at different Damkohler numbers.
The width of each simulation is 150 μm, and electric field lines are
shown in blue.

Fig. 2(c) was found to be 1.67, showing the capability of the
phase-field model to capture fractal growth phenomena.

After an initial formation stage, zinc dendrite tips are
observed to grow at a constant velocity that depends expo-
nentially on the applied overpotential [49]. Figure 4 shows
agreement between experimental tip velocity measurements
and phase-field simulations of single dendrites grown from a
perturbation. The inset figure shows the height of a simulated
dendrite vs time, revealing that the dendrite grew at constant
velocity. Since the velocity v is proportional to the tip current,
a linear relationship between log(v) and ηt exists, as shown in
Fig. 4, with the expected Tafel slope of α = 0.5.

Zinc dendrite tips are also observed to be parabolic with
a characteristic radius of curvature [49]. The simulations in
Fig. 4 produced parabolic tips with curvatures ranging from
0.85 to 1.15 μm, within the range measured by Diggle et al.
[49] (see Table VIII). Figure 5 shows a simulated dendrite with
a parabolic tip (see Supplemental Material for details [40]).
Importantly, tip curvature cannot be predicted from models
such as diffusion-limited aggregation that do not account for
surface energy.

Discussion. Preventing dendrite growth by improving
electrolyte transport in batteries (the denominator of the
Damkohler number) has been demonstrated recently [1], but
little effort has been spent targeting the exchange current,
despite the fact that kinetics are known to vary by orders
of magnitude with slight changes in electrolyte composition
[50]. Surprisingly, reducing the exchange current to smoothen
deposits appears to have been reported in a different context
for cadmium decades ago [51], and may also explain why
magnesium, with an exchange current orders of magnitude
smaller than lithium or zinc [52], is not observed to grow

(a) (b)

FIG. 3. (Color online) Morphologies simulated under the same
conditions as Fig. 2 but with (a) fourfold and (b) isotropic interfacial
energy.
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FIG. 4. Comparison of simulated and experimental dendrite tip
velocity as a function of overpotential for deposition of zinc from a
0.1 M zincate electrolyte. An exchange current of i0 = 1000 A/m2

was used for zincate, following [49], and Da = 10. The inset figure
shows the height of a simulated dendrite tip (nηt = 84 mV) with time.

dendrites [53]. Recently it was observed that a small amount
of bismuth at zinc surface inhibits dendrite growth [54], which
might also be an effect of reaction kinetics.

Finally, there appear to be many similarities between
electrodeposition and the phenomenon of viscous fingering
[55]. In addition to visually similar morphologies, the growth
process of both occur via mechanisms of shielding, spreading,
and tip splitting. The exchange current in electrodeposition
appears to act as a stabilizing force in an analogous way to
gravitational stabilization of viscous fingering.

In conclusion, a phase-field model of electrochemical
interfaces was developed to study the growth of dendrites
during electrodeposition. The model was derived in the
grand canonical ensemble to allow the interface to be
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FIG. 5. Interfacial points in the vicinity of a growing dendrite
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polynomial that has been fitted to these points. The inset image shows
a wider view of the same dendrite tip. This dendrite was grown
under an imposed overpotential of nηt = 116 mV, and has a radius
of curvature at the tip of r = 0.99 μm.
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widened to simulate experimental length and time scales,
and Faradaic reactions were modeled rigorously with Marcus
kinetics. Damkohler number, overpotential, and electrolyte
concentration were investigated, and the model accurately
reproduced the reaction kinetics, fractal dimension, and tip
velocity and curvature of zinc dendrites. The results suggest
that engineering the electrolyte to decrease the reaction

kinetics could be a successful strategy for controlling dendrite
growth.
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